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Abstract

Combined LAURA-UPS Solution Procedure

for Chemically-Reacting Flows

by William A. Wood

Chairperson of Supervisory Committee: Professor Scott Eberhardt

Department of Aeronautics

and Astronautics

A new procedure seeks to combine the thin-layer Navier-Stokes solver LAURA with

the parabolized Navier-Stokes solver UPS for the aerothermodynamic solution of

chemically-reacting air flowfields. The interface protocol is presented and the method

is applied to two slender, blunted shapes. Both axisymmetric and three-dimensional

solutions are included with surface pressure and heat transfer comparisons between

the present method and previously published results. The case of Mach 25 flow over

an axisymmetric six degree sphere-cone with a non-catalytic wall is considered to 100

nose radii. A stability bound on the marching step size was observed with this case

and is attributed to chemistry effects resulting from the non-catalytic wall boundary

condition. A second case with Mach 28 flow over a sphere-cone-cylinder-flare configu-

ration is computed at both two and five degree angles of attack with a fully-catalytic

wall. Surface pressures are seen to be within five percent with the present method

compared to the baseline LAURA solution and heat transfers are within 10 percent.

The effect of grid resolution is investigated and the nonequilibrium results are com-

pared with a perfect gas solution, showing that while the surface pressure is relatively

unchanged by the inclusion of reacting chemistry the nonequilibrium heating is 25

percent higher. The procedure demonstrates significant, order of magnitude reduc-

tions in solution time and required memory for the three-dimensional case over an all

thin-layer Navier-Stokes solution.
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Chapter 1

INTRODUCTION

International interest in a space station, the possibilities for human exploration

to other planets, and the advancing age of the space shuttle fleet have all brought

the issue of advanced launch and reentry vehicles to the forefront. A critical design

point for these vehicles is during hypersonic reentry, when peak heating rates occur

and aerodynamic control effectiveness may be altered due to flowfield phenomenon

unique to the high-altitude, high-velocity conditions. The high temperatures and high

convective velocities relative to reaction times create an environment where chemical

nonequilibrium effects can be significant. Accurate aerothermodynamic predictions

during this part of the reentry trajectory are essential for sizing both the thermal

protection system and aerodynamic control surfaces. Ground based tests simulating

these flight conditions, including considerable nonequilibrium effects, are difficult to

perform. Flight tests can be prohibitively expensive.

Two popular computational approaches for obtaining aerothermodynamic predic-

tions on these classes of vehicles are to solve the thin-layer Navier-Stokes (TLNS)

equations or the parabolized Navier-Stokes (PNS) equations. TLNS is derived from

the filll Navier-Stokes equations by neglecting viscous terms in the streamwise and

crossflow directions. The assumptions inherent in the TLNS equations are often

acceptable for a wide class of conditions and configurations, including cases of hyper-

sonic, chemically reacting flow. Excessive computational requirements can become

a drawback to using TLNS as the entire solution domain is relaxed simultaneously

in time. Complex configurations[17] can tax computer memory with millions of grid

points, and solution times may be measured in CPU days. In addition, solving for

chemical nonequilibrium can, for some algorithms performing exact matrix inversions,

increase the computer memory and time requirements by the cube of the nmnber of

species considered[7].

The PNS equations are obtained from the full Navier-Stokes equations by neglect-
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ing the time derivativesand the streamwiseviscousderivatives. Limited to flowfields

with streamwisesupersonicflow outside the boundary layer, no streamwisesepara-

tion, and weakstreamwisepressuregradientsin the subsonicregion,PNS algorithms

are well suited for solvingsharp-nosed,slender-bodysupersonic/hypersonicconfigu-

rations. Being spacemarching and steady state, PNS formulations can realize ap-
preciabledecreasesin both computational time and memory requirementsrelative to

TLNS algorithms. The principle difficulty in applying the PNS equationsto the class
of vehiclesconsidered here is that commonly the algorithms cannot solve blunt-body

flowfields, and most reentry vehicle designs incorporate blunted nose and leading edge

regions in order to reduce peak heating rates.

The present study looks to combine two well-established computational codes, one

a TLNS algorithm and the other PNS, for the solution of chemically-reacting, hyper-

sonic flowfields. The technique is successfully applied to axisymmetric geometries

at both zero and non-zero angles of attack. Different sets of freestream conditions

are considered, and the effects of wall catalycity are investigated. Challenges and

obstacles to the consistent integration of the two codes are observed and comments

regarding the applicability and limitations of the procedure are documented.



Chapter 2

PRELUDE TO THE PRESENT METHOD

Recently, efforts have been made to combine the TLNS and PNS approaches

in order to get timely, accurate hypersonic viscous solutions while circumventing

some of the above mentioned limitations. Weihnuenster and Gnoffo[31] proposed a

multi-block solution procedure, in which the domain is divided into blocks ordered

in the streamwise direction. The general idea is to march these blocks downstream,

analogous to the PNS approach of marching two-dimensional planes, and to solve the

interior of each block with TLNS. This procedure principally attacks the memory

requirements inherent in obtaining a full-body TLNS solution by splitting the domain,

but does not decrease the time required to obtain the solution since TLNS remains

the governing equations.

Tile TLNS code used by Weihnuenster is Langley Aerothermodynamic Upwind

Relaxation Algorithm (LAURA)[6, 9, 10, 11]. LAURA is a finite-volume, shock-

capturing, hyperbolic equation solver with second-order spatial accuracy for the

steady-state solution of viscous or inviscid hypersonic flows. The scheme employs a

point implicit relaxation strategy with the upwind flux-difference splitting of Roe[24].

The right-hand-side (RHS) of the equations are formulated according to Yee[34] with

the entropy condition of Harten[15]. Perfect gas, equilibrium air, and nonequilibrium

air calculations can all be performed.

Greene[12] has extended the LAURA code into a PNS version. With this method,

LAURA-TLNS is used on the blunt-nose portion of a hypersonic vehicle. At a point

in the flowfield consistent with the PNS equations, the transfer is made to LAURA-

PNS, which is then marched down the remainder of a slender vehicle afterbody. This

particular formulation, being a TLNS extension, is locally iterative in pseudo-time

steps, and its performance suffers from arriving as a PNS solver via a TLNS algorithm,

rather than being a code that was optimized as a PNS solver from inception. Thus,

while this method significantly reduced the memory required to obtain a solution, it

was not able to reduce solution time to the level desired.



Upwind ParabolizedNavier-StokesSolver (UPS)[5, 18, 19,20, 21, 26, 27, 28, 29]

is an upwind, finite-volume,state-of-the-art PNS codewith chemicalnonequilibrium
capability. It is second-orderaccuratein the crossflowplane and first order accurate

in the marching direction. The equations are approximately factored and solved

implicitly, with the approachof Vigneron et a/.[30] employed to suppress departure

solutions.

UPS was identified as a code that, when combined with LAURA, might provide

the tremendous reduction in vehicle solution time originally sought with the LAURA-

TLNS/LAURA-PNS method. The present method seeks to combine LAURA and

UPS for a consistent solution procedure for air flows in chemical nonequilibrium.

Previously, UPS has been joined with the TLNS code CNS by Lawrence et a/.[20]

for perfect gas computations. Nonequilibrium solutions are presented by Buelow

et a/.[4] and Muramoto[22] using UPS with the TLNS code TUFF. LAURA has

the advantage over TUFF in that it can handle generic, three-dimensional geometric

shapes, as are encountered with real vehicle configurations, and is an upwind, finite

volume method, like UPS.



Chapter 3

PRESENT METHOD

A combined LAURA-UPS solution procedure has been implemented by Wood

and Thompson[33] for perfect gas and equilibrium air flows. That study included

detailed solutions for an axisymmetric perfect gas case and a three-dimensional equi-

librium air solution for the Reentry F vehicle[25], including turbulence. Generally

good results were seen with the combined method, and a very significant reduction

in solution time was achieved. The extension of this procedure to nonequilibrium air

calculations, however, is not straightforward, because while both UPS and LAURA

use the same equilibrium air curve fits, they do not use the same chemistry models

for nonequilibrium air.

3.1 The Codes and Their Governing Equations

3.1.1 LAURA

LAURA versions 3.1 and 4.0.2 were used in the present study. TLNS solutions with

chemical nonequilibrium and thermal equilibrium were sought for a seven-species

air model. The governing equations can be written in integral form, for simplicity

presented here in a three-dimensional coordinate system with the body surface in the

x-y plane. The LAURA code itself incorporates these equations with a full curvilinear

coordinate transformation. The conservation equations are,

0Q

where the conserved variables are,

(3.1)

Q

P8

pu

pv

pw I

pe

(3.2)



and the flux vector is,

+

+

psu - pDs°o-_

pu 2 + P - T_x

pUV -- rx_

pUW -- T_

pull - k aT - uT_ - VTxy -- W'C_z -- p__h_D_
OK

p_v - pD_ a_

pvu -- Tyx

pv 2 + P - _-yy

pvw - ryz

pvH - k °T - uru_ - VTyy -- WTyz -- p_h_D,_Oy
8

psw - pD_

flWl.t -- Tzx

pwv -- Tzy

pw 2 + P - Tzz

pwH - k aT - u'rz:_ - VTzu -- w_-_ -- p__,h_D_°o_Oz

3

(3.3)

The source term is,

W

0

0

0

0

(3.4)

where &_ accounts for the species production due to finite-rate chemistry.

The thin-layer assumption as applied in LAURA retains viscous derivatives only

in the body-normal direction. The shear stresses then become,

2 Ow

r_ = r_ 3 _ Oz (3.5)

4 Ow

rz_ - 3 t_ Oz (3.6)

r_,u= Ty_ = 0 (3.7)

Ou

= = (3.s)
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OV

Tv_ = rzy = # Oz (3.9)

The system is closed with the equation of state by assuming the fluid to be a

mixture of calorically imperfect gases, such that,

P = [2 p RT/M 

For more details on the governing equations, see [1, 8, 9, 11].

(3.1o)

3.1.2 UPS

The PNS solutions were obtained with UPS using the seven species, seven reaction

nonequilibrium air chemistry model with the reaction rates of Blottner et al.[3] Like

LAURA, UPS uses a general curvilinear coordinate transformation when solving the

governing equations, but for clarity the equations are presented here in cartesian

form, following the approach of section 3.1.1.

Starting from Eqn. 3.1, the first term, the time derivatives, are dropped as part

of tile PNS assumptions. UPS solves the fluid dynamics and reacting chemistry in a

decoupled manner, so & in Eqn. 3.4 is set to zero while solving the fluid mechanics,

which drops out the RHS of Eqn. 3.1. This leaves only the second term, which in

strong conservation form can be written,

OFi OFj OFk

O--_x÷ _ + Oz - 0 (3.11)

where tile three vector components of i_ have been expressed as,

F,=F-_', F3-=_'.], Fk=I_.k

The PNS assumption on the streamwise viscous derivatives as applied in UPS drops

the streamwise derivatives in the shear stress terms, as well as the entire viscous

flux in the streamwise direction, which allows space marching in the streamwise di-

rection outside the subsonic boundary layer region. The Vigneron factor[30], wv, is

applied to the streamwise pressure gradient to allow marching in the subsonic region.
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Incorporating theseassumptions,the fluxescan be written as,

Fi --

flu

pu 2 + co_P

puv

puw

u(Et + P)

(3.12)

where,

and

Fj =

Fk =

tOY

pvu - %x

pv 2 + P - %y

pvw - %z

v(Et + P) - u%x - vr_y - wryz - k°r - p y'_ c, Ush,
Oy

8

pw

pwu - rzx

pwv - rzy

pw 2 + P - rz_

w(Et + P) - UTz,: -- v%_ -- Wrz_, -- k or _ c,U_h_Oz -- P
3

Txx

7"yy

,'l'zz

Txy = Tyzg =

"Yxz _- *'[-zx

Tyz = Tzy --_

=-5" +-0-7
4 Ov 2 Ow

- 3 it Oy 3 # Oz

4 Ow 2 Ov

-- 3 # Oz 3 # Oy

Ou

Ou
"-$;z

tt-57z+

[ 12 ]Et = p e +-_(u + v2 + w_)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)



The Vigneron factor is,

(3.22)wv=min 1, l+(7-1)M 2

In practice, Eqn. 3.22 is applied with a safety factor.

The chemistry is loosely coupled to the fluid dynamics through the species conti-

nuity equation,

P[ ot + fZ.Ves = V. (pDsVcs)+ Cos (3.23)

The equation of state completes the equation set in the same manner as Eqn. 3.10.

For further details, see [21, 28, 29].

3.2 Modifications for Compatibility

Changes made to the LAURA pre-processor for compatibility with UPS focus mostly

on grid generation. The grid on the cone portion of a sphere-cone was changed from

being body normal to being axis normal so as to facilitate space marching on slender

bodies. The spacing normal to the body in the initial grid was modified so as to

better capture the bow shock for vehicles with very slender afterbodies. The number

of cells solved on spherical nosecaps was reduced to 12.

The wall boundary conditions in LAURA were changed to correspond with the

UPS wall boundary conditions by switching from the standard LAURA boundary

conditions to the primary alternate boundary conditions. The standard LAURA vis-

cous wall boundary conditions apply the wall values, i.e., zero velocity, fixed wall

temperature, etc., at the center of an image cell below the vehicle surface. The UPS

approach is to use reflected boundary conditions for the image cell, so as to apply

the boundary conditions to be at the cell face defining the wall. The UPS approach

is considered to be a higher-order method than the default LAURA boundary im-

position. However, the LAURA default boundary conditions were found to be more

robust than the reflected boundary conditions, so the LAURA solutions were first

partially converged with the standard boundary conditions, and then switched to the

reflective boundary conditions during the later stages of convergence after the flow-

field had stabilized. This switch is usually made at the same time spatial second-order

accuracy is enforced.
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Of the five kinetic modelsavailable in LAURA, the 15 reaction model of Kang

et a/.[16] was chosen as being the closest match with the rates of Blottner[3] in UPS.

Two further parameters were toggled from the default in LAURA to better deal with

slender-body configurations. The eigenvalue limiter was set to be scaled by the cell

aspect ratio and the upwinding of the surface properties was turned off.

The principle change made to UPS involved the restart file. A jump in proper-

ties was observed during nonequilibrium restarts. This was tracked to the use of a

freestream value of the mixture molecular weight when initially decoding the tem-

perature from the energy and species concentrations, prior to marching. The remedy

was to read the local mixture molecular weight into the standard restart file.

3.3 Remaining Differences Between the Codes

Some differences in the chemistry models remain between LAURA and UPS. Algo-

rithmically, LAURA solves the chemistry equations with a fully-coupled procedure

while UPS uses a loosely-coupled approach, but with the option for local subiterations

to get a close approximation to a fully-coupled scheme. The two codes compute the

species enthalpies with fundamentally different approaches, as LAURA uses polyno-

mial curve fits while UPS uses interpolated table look-ups. This prevents the exact

matching of species concentrations, internal energy, and temperature between the

codes, though the magnitude of the difference is considered to be small enough to not

prohibit the interfacing of the codes.

Further differences exist in the way each code computes the bulk thermodynamic

and transport properties. This leads to small mismatches between the codes for pa-

rameters such as viscosity and speed of sound. One question this raises is whether to

match the non-dimensional freestream quantities Mach number and Reynolds number

between the codes, or to match the dimensional freestream velocity and density. For

high Reynolds number, hypersonic applications where Math number independence

has been reached, the decision made here is to match the dimensional freestream

conditions. As examples of the differences in the transport property computations,

plots of viscosity versus temperature are presented for molecular oxygen, Fig. 3.1,

and nitric oxide, Fig. 3.2. The computations of both LAURA and UPS are presented

along with the recommendations of Gupta et a/.[14], who conducted one of the most

recent studies into transport property computations. Generally, the other species
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Fig. 3.1 Comparison of molecular oxygen species viscosities.

500 - xl 0 .6 oO
O o

400 E7E_

g,

kg 300

20O

100

xl 03
",,,,I,,,lll,,,I,,,,I,,,,I,,,,I

0_ 5 10 15 20 25 30

T, K

Fig. 3.2 Comparison of nitric oxide species viscosities.
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Fig. 3.3 Comparison of molecular nitrogen species viscosities.

viscosities match fairly well over the temperature range 1000-30,000 K, with the

molecular nitrogen viscosity computations presented in Fig. 3.3 as a typical example.

Sample computations of thermal conductivities performed for typical near wall con-

ditions resulted in a 4-5 percent higher value from UPS than LAURA. It is difficult

to predict a priori what effect these differences would have relative to solutions from

the two codes.

3.4 Interface Protocol

The interface procedure between LAURA and UPS begins with the standard LAURA

restart file for a converged chemical nonequilibrium solution. From the LAURA

restart file, a crossflow data plane is extracted to become the UPS starting plane.

Currently, this plane is chosen at least three cells upstream of the final LAURA

solution plane in order to avoid possible contamination from the outflow boundary

conditions. The variables available in the LAURA restart file are: the three velocity
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components, temperature, the seven species densities, and the finite volume grid,

[u,v,w,T,p_,x,Y,Z]t

The variables needed by UPS to start are: mixture density, the three momentum

components, total energy, mixture molecular weight, species mass fractions, and the

starting plane in finite volume form,

[p, pu, pv, pw, Et, M, c_, x, y, z],,

In the equations which follow, a subscripted 'T' is used to indicate a LAURA variable

or quantity, while the subscript "u" refers to the corresponding UPS parameter.

The variables required by UPS are obtained from the LAURA variables in the

following manner. The grid is transformed according to the transformation of the

physical coordinates as,

x,, = -zl , y_, = xt , z,_ = yl (3.24)

The total density is found from summing the species densities,

= F_,p,,, (3.25)
$

The three components of momentmn are obtained from the velocity components and

the total density,

pu,_ = p_, . (-wl) , pvu = p,, " ul , pwu = p_, " vt (3.26)

Species mass fractions are found by dividing the species densities by the total density,

p_,t (3.27)
P,,

The mixture molecular weight is found by applying the perfect gas equation of state

to the mixture temperature and pressure,

M,, - p,,f_T_ (3.28)
Pu
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where the mixture pressure was determined from summing the species partial pres-

sures,

c_,,_RTt (3.29)
P_'=P"E Ms

3

a step consistent with the assumption, common to both codes, that the working fluid

is a mixture of ideal gases.

The UPS total energy now remains to be computed. Initially, the effort was made

to take the temperature and species densities from the LAURA solution, pass them

through the LAURA enthalpy curve fits, add in the velocity and species property

information, and obtain a total energy that would be passed directly to UPS. A

problem was encountered when UPS took this energy and decoded temperature and

pressure. The differences between the UPS and LAURA enthalpy computations lead

to differences between the decoded UPS temperatures and pressures and the original

LAURA temperatures and pressures. These variations, in combination with a fixed

wall-temperature boundary condition and the Vigneron condition's limitation on the

pressure gradient near the wall set up oscillations that restricted the stability of the

marching UPS solution. The fix to this problem was to pass the LAURA temperatures

directly through to the UPS species enthalpy interpolated table look-ups, then to

complete the computation of the total energy as described above,

= + v?+ w?)+< - (3.30)
A,

where,

Yu : E hs,u Cs,u

and,

h,,_, = Cp,_, Tt + ho,s,_, (3.32)

Since both LAURA and UPS are finite volume formulations, the UPS starting-

plane grid is taken at a streamwise location corresponding to the location of the

cell-centered LAURA data. Converting the nondimensionalizations so that the UPS

velocities are normalized by the freestream speed of sound, rather than the freestream

velocity as is done in LAURA, and performing the curvilinear transformation between

the two codes,

G=-rh, _u=(t, (,,=,_t (3.33)
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completes the iilterface process. The actual programs used to extract the UPS starting

plane and external grid from the LAURA solution can be found in Appendices A and

B, respectively.



Chapter 4

RESULTS

The present method is successfully applied to two primary configurations and flow

conditions. Case 1 is an axisymmetric sphere-cone, chosen to correspond with the re-

sults of Gupta et al.[13] The nose radius is 0.0381 m and the body angle is six degrees.

The freestream conditions are for Mach 25 at an altitude of 53.34 km (175 kft.). The

wall temperature is held fixed at 1260 K, with a non-catalytic chemistry boundary

condition. Case 2 is for Mach 28 flow over the sphere-cone-cylinder-flare configura-

tion studied by Bhutta et a/.[2] at both two and five degree angles of attack. This

configuration has a 0.1524 m spherical nosecap followed by a nine degree cone. Af-

ter l0 nose radii the cone is followed by a cylinder and then a five degree flare,

each of l0 nose radii length. The freestream conditions correspond to an altitude of

83.8 kin, (275 kft.), at a Reynolds number per meter of 6148. The wall temperature

for this case is 833 K and a fully-catalytic boundary condition is employed. Table 4.1

presents a summary of the nominal conditions for the two cases. For all calculations

the freestream species concentrations were set at,

CN2

co 2

CN

CO

CNO

CNO+

0.767

0.233

6.217 × l0 -2°

7.758 × l0 -9

4.981 × 10 -s

4.567 × l0 -24

(4.1)

The seventh specie, electrons, are found from a charge balance with the ionized nitric

oxide,

.N'_- = .AfNO+ (4.2)
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Table 4.1 Nominal conditions for Cases 1 and 2.

Case 1 Case 2

Configuration sphere-cone blunted multi-conic

Moo 25 28

Re (m -1) 3.95 xl0 s 6148

Altitude (kin) 53.34 83.8

R,, (m) 0.0381 0.1524

0b (deg) 6 9-0-5 (10 R,_ each)

Twau (K) 1260 833

Wall catalycity none fully

(deg) 0 2, 5

4.1 Case 1

A viscous, second-order accurate TLNS LAURA solution was obtained for Case 1 with

chemical nonequilibrium, thermal equilibrium, and a non-catalytic wall condition,

implemented in both codes as,

OCs wallOn =0 (4.3)

i.e., the mass fractions of the image cells are set equal to the mass fractions of the first

cell outside the wall. The axisymmetric LAURA computational grid contains 64 cells

normal to the body and 28 cells in the streamwise direction, extending five nose radii

to 0.19 m. This grid was adapted using the standard LAURA grid adaption routine.

Figure 4.1 displays the final LAURA grid, for clarity showing only every fourth point

in the body-normal direction. For consistency, Fig. 4.1 and all subsequent figures use

the UPS coordinate system. The location where the UPS starting plane was extracted

from the LAURA solution is indicated in Fig. 4.1. That portion of the LAURA grid

downstream of the UPS starting plane was supplied as an external grid to UPS. Since

the UPS marching step size was smaller than the LAURA cell sizes shown in Fig. 4.1,

the LAURA grid was linearly interpolated in the streamwise direction to obtain the

actual UPS grid. This is the standard UPS approach for handling external grids. A

significant overlap of the solution domains was deliberately chosen for this case to
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Fig. 4.1 Case 1 LAURA computational grid, showing every fourth body-normal

point.

allow for a direct code-to-code comparison between LAURA and UPS. In general, an

overlap of this size is not required by the combined procedure.

The UPS solution was carried out 100 nose radii to 3.8 m by extending the external

grid downstream in a conical extrapolation. The grid was moderately adapted to the

solution in the body-normal direction as the solution proceeded, in such a way as to

maintain the original grid spacing at the wall while linearly stretching the outer 60

percent of the grid. This adaption routine is currently not fully integrated into the

version of UPS used here, and relies upon the user to provide the necessary stretching

parameters. A copy of the grid adaption routine can be found in Appendix C.

Figure 4.2 displays Math contours from the LAURA and UPS solutions, covering

the overlap region to five nose radii. The location of the UPS starting plane is

indicated, and the UPS Math contours are overlaid upon the LAURA Mach contours

downstream of that point. Excellent agreement is seen between the present method

and the LAURA-only solution.

Figures 4.3 and 4.4 plot surface pressures, normalized by twice the freestream
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Fig. 4.2 Mach contours: UPS solution overlaid upon LAURA solution.

dynamic pressure, versus the streamwise distance measured along the surface, nor-

malized by the nose radius. The viscous shock-layer (VSL) solutions of Gnpta[13]

are included for comparison. The VSL equations employ a further approximation to

the governing equations beyond the PNS equations to allow solution marching in both

the streamwise and circumferential directions. Figure 4.3 is a close-up on the interface

region, extending to i0 nose radii. The Gupta-VSL solution extends the full l0 nose

radii, while the LAURA solution was terminated at six nose radii in this plot. The

UPS solution was initiated at two nose radii and extends to l0 nose radii. Excellent

agreement is seen between the UPS and LAURA solutions. The Gupta-VSL solution

is seen to agree very well with the LAURA and UPS solutions outside of the region

of sphere-cone tangency, where Gupta-VSL predicts higher pressures. An elevated

pressure bump appears in the UPS solution at five nose radii. The cause for this is

not known for certain at this time, but it could be a residual of the LAURA-UPS

interface.

Figure 4.4 extends the surface pressure plot out to 100 nose radii, capturing the

overexpansion and recompression regions. There is a maximum difference between

the UPS and Gupta-VSL solutions of 3-4 percent in the recompression region. As in
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Fig. 4.5 Case 1 surface heating the interface region.

Fig. 4.3, the LAURA solution was terminated at six nose radii.

Surface heat transfer results for LAURA, UPS, and Gupta-VSL are presented in

Figs. 4.5 and 4.6. Figure 4.5 plots the interface region out to a distance of six

nose radii. Similar trends are seen in the heating as were seen for the pressure in

this region. The heating at the interface between the LAURA and UPS codes picks

up smoothly, but there is a bump in the UPS heating between four and five nose

radii, corresponding to the pressure bump discussed earlier. The Gupta-VSL heating

is elevated above the LAURA-UPS heating in the region of the sphere-cone juncture.

Figure 4.6 carries the present method and Gupta-VSL heating out to 100 nose

radii. Note that the LAURA heating terminates at six nose radii. A noticeable

difference exists between the UPS and Gupta-VSL solutions that persists from the

overexpansion region on downstream. The Gupta-VSL results are consistently 18-22

percent lower than the UPS heating. The VSL equations employ further assumptions

on the governing equations than PNS, which may account for some of the heating

difference, and while Figs. 3.1 and 3.2 show good agreement between the UPS and

Gupta viscosities, there are differences in other aspects of the kinetic models which

may also be contributing to a heating disparity.
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Fig. 4.6 Case 1 surface heating to 100 nose radii.

Looking specifically at reacting chemistry effects, Fig. 4.7 profiles the atomic oxy-

gen mass fraction versus normal distance from the surface, as a fraction of the shock

layer, at an axial position five nose radii from the nosetip. The profiles from the

LAURA and UPS solutions are seen to be similar, with a difference in mass fraction

at the surface of two percent. The mass fraction gradients at the surface are seen to

be zero, as they should for the non-catalytic wall assumption.

This difference in oxygen mass fraction at the surface becomes critical in realizing

the difficulties encountered in obtaining the combined LAURA-UPS solution for this

particular configuration. While the Blottner and Kang reaction sets are similar or

identical for most reactions, a significant difference in the equilibrium constant can

occur in the equation controlling production of ionized nitric oxide,

N+O_NO++e -. (4.4)

Table 4.2 lists the forward and backward rates for Eqn. 4.4 from the two kinetic

models. At a temperature of 1280 K, an average temperature for a Case 1 surface
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Fig. 4.7 Case 1 atomic oxygen mass fraction profiles at X/R,_ = 5.

Table 4.2 Reaction rates for ionized nitric oxide.

k/ kb

319oo 1021 T_I. 51.4x l06T 1'Sexp r 6.7x

3240o 1019 T -1'°9.03 x l09T °'sexp- r 1.8x

Kang (LAURA)

Blottner (UPS)
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cell, the Blottner equilibrium constant,

kj

k_q = _ (4.5)

for this reaction is 2.33 × 10 -16, while the Kang equilibrium constant is two orders

of magnitude lower at 6.58 × l0 -is. Under the flow conditions for this case, both

atomic oxygen and atomic nitrogen concentrations at the surface are large, with the

flow consisting of roughly equal parts atomic oxygen, atomic nitrogen, and molecular

nitrogen near the wall. The net result is that the UPS solution produces significantly

more ionized nitric oxide relative to the starting solution provided by LAURA, and

at a fast rate. This creates a marching step-size stability restriction characterized by

the DamkShler number,

Da - rftow _ available flow residence time (4.6)
rr_actio,,s time required for reaction equilibration

see [23], which is exacerbated by a tight grid spacing near the wall. Because of the

no-slip viscous wall boundary condition the fluid velocity in the first cell outside

the wall is very low. Coupling this with the extremely high aspect ratio of the

cells in tile wall region results in the flow having a relatively long residence time.

However, due to the difference in equilibrium constants between UPS and LAURA,

the present method produces fast reactions downstream of the interface, driving up

the Damk6hler number. The net result on the solution is to put a maximum value

on the aspect ratio of the near-wall cells, which translates into a restriction on the

marching step size of the present method. A schematic of the stability restriction is

presented in Fig. 4.8

A compromise was sought whereby the LAURA grid was modified to double the

cell size of the first grid cell, which sets a nominal cell Reynolds number of two at the

wall. This was found to still allow accurate resolution of gradients at the wall while

somewhat relaxing the DamkShler imposed marching stability restriction. In this case

the non-linearity inherent in the chemical reactions allows for marching steps more

than twice as large as were possible with a wall cell Reynolds number of one. Larger

grid spacings at the wall were found to be too coarse to provide suitable LAURA

solutions.

The LAURA solution for this case was converged through an L2 norm of the

residual of seven orders of magnitude in 2200 iterations. The total CPU time on a
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Fig. 4.8 Damk6hler stability restriction.

Cray 2 was 1411 seconds. Figure 4.9 contains the convergence history of the LAURA

solution. One caveat to this performance is that the solution was begun from a

converged solution for a similar, but not identical, case. The sharp spikes occurring

early in Fig. 4.9 are the result of grid adaptations, while the later spikes are due to

shock ringing.

The UPS solution was obtained on a Cray YMP with a final marching step size of

0.25 mm. This is a small step size in relation to other cases which have been run with

the present method, but is a result of the previously mentioned marching stability

restrictions. Muramoto[22] reports using the same marching step size for a Mach 20,

seven-degree sphere-cone nonequilibrimn case, with a modified version of UPS, and

Tannehill et al.[27] report using a step size of 0.2 mm with an axisymmetric cone.

The full UPS solution to 100 nose radii required 4198 seconds.

4.1.1 Attempts at Larger Marching Steps

While the axisymmetric geometry of Case 1 was able to be solved by the present

method in a reasonable amount of computer time with the small marching step size,
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Fig. 4.9 Case 1 LAURA convergence history.

there is concern that a full-sized, three-dimensional vehicle might require excessive

computational resources if conditions were such that the stability restriction observed

here applied. Several attempts were made to enhance the stability of the UPS march-

ing solution for the Case 1 conditions. Local chemistry iterations were added, second-

and fourth-order subsonic smoothing terms were turned on, the safety factor applied

to the Vigneron condition in Eqn. 3.22 was adjusted, and the eigenvalue stability

parameters EPSA and EP,gS in the UPS input file were changed. Sonqe small sta-

bility improvement was found by increasing the values of the second-order implicit

smoothing term, the Vigneron safety factor, and the stability parameter EPSA, but

not enough to allow order-of-magnitude larger step sizes.

The UPS solution instability was typically manifested by a divergence of the

cell temperatures at the wall. It was thought that the reflected boundary conditions,

where the wall temperature is enforced only as the geometric average of the image cell

temperature and the temperature of the first cell above the wall, might be contributing

to the instability because the wall temperature is not explicitly enforced. The UPS

boundary conditions were altered to apply the wall boundary conditions of no slip, no

penetration, and fixed wall temperature at tile image cell center, and a new solution
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was obtained with both LAURA and UPS using this boundary condition, but no

appreciableimprovement in the stability of the present method wasobserved. An

effort to enforcea limiter on the Newton iteration usedto decodethe temperature
and pressuregiven the total energy,mixture density, and speciesconcentrationsalso

failed to producea usefulrelaxation of the stability restriction on the marching step
size.

Someattempts at solution smoothing and solution modulation were tried with

the present method. Severalapproacheswere attempted, beginning by trying to
march the UPS solution one step, modifying the original interface plane with an

under relaxation schemeby adding somefraction of the differencebetweenthe initial

starting plane data and the first step solution, and repeating in a locally iterative

procedure. The idea was to allow the solution to relax without creating excessive

transients. The next attempt tried to march the UPS solution while modulating

it with the LAURA solution, so that the first step was 10 percent UPS and 90

percent LAURA, the second step 20 percent UPS and 80 percent LAURA, and so

on. While these attempts had some small success in delaying or postponing the

instability with large step sizes, they were unable to suppress the instability enough

to solve a significant portion of the geometry with large marching steps. More exotic

solution modulation methods were tried whereby the UPS domain was split to allow

the inviscid, viscous, and near-wall regions to relax from the LAURA solution at

different rates, but the result was still the same the marching step-size was limited

to the millimeter range or less.

An attempt at a solution was made using the Park[23] kinetic model in LAURA,

with no more justification than that it is a readily available option. Perhaps pre-

dictably, this did not produce any improvement in stability. The location of the

interface point was varied as well, without producing a change in the behavior of the

solution with the present method.

Changes to the grid included trying 40, 64, and 128 points in the body normal

direction with nominal cell Reynolds numbers at the wall of 0.5, 1, 2, 5, and 10. The

number of points did not seem to alter the solution appreciably for this configuration,

but as discussed earlier the cell size at the wall proved to be very important. The

tradeoff had to be made between a tight clustering at the wall for good gradient

resolution and a more reasonable cell aspect ratio to allow feasible marching step
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sizes.

A final parametric on the basic Case 1 solution was performed by employing a

fully-catalytic wall instead of the non-catalytic boundary condition. The surface heat-

transfer results for this case are presented in Fig. 4.10. For this solution a march

larger step size was possible with UPS, because the fully-catalytic wall condition

creates a different gas composition in the near-wall region which does not involve

the ionized nitric oxide reaction, Eqn. 4.4, to the same degree as the non-catalytic

solution. However, as can be seen in Fig. 4.10 the heating from the present method

immediately downstream of the interface region does not look good, although the

heat transfers agree well from 15-100 nose radii with the results of Gupta for the

same configuration. Interestingly, the same behavior in the UPS heating near the

interface point is reported by Muramoto in Fig. 11 of Ref. [22] for an axisymmetric,

seven degree sphere-cone with a fully-catalytic boundary condition. In discussing

his result, Muramoto further cites Buelow[4] as another investigator who has seen a

similar heating behavior with UPS.
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4.2 Case 2

Three-dimensional finite-rate chemistry solutions were sought for the Case 2 config-

uration for Mach 28 at two and five degree angles of attack. The wall boundary

condition was set to be fully catalytic, which in both LAURA and UPS sets the wall

species concentrations equal to their freestream values,

cs,_o_u = es,_o (4.7)

Since the species concentration gradients are no longer zero at the wall for this case,

as they were for the non-catalytic solutions, a computation of the diffusive heating

rate was added to the UPS surface property output routine as,

kLo
qdi.gusi,e = _ _ hs On [_o_,tt

(4.8)

Computations of the diffusive heating for the cases considered in the present study

showed its contribution to the total heat transfer to be a very small percentage. In

the calculations of Ref. [2] a variable wall temperature was employed, but for the

present calculations a fixed wall temperature of 833 K was used. This was chosen as

a rough average to use for comparison with the results of Bhutta.

4.2.1 Two Degrees Angle of Attack

The LAURA symmetry plane grid for this case is displayed in Fig. 4.11, for clarity

showing only every eighth point in the body-normal direction. The full LAURA

grid contains 51 streamwise cells, 18 circumferential cells, and 128 cells normal to the

body. The UPS starting plane was extracted from the fifteenth streamwise cell in the

LAURA solution.

Figure 4.12 contains both windside and leeside surface pressures, normalized by

twice the freestream dynamic pressure, versus axial distance, normalized by the nose

radius, for both the full-body LAURA solution and the coupled LAURA-UPS solution

of the present method. The agreement is very good, with the most noticeable

difference occurring at the cylinder-flare junction. The pressure jump at the flare

is much more sharply defned with the UPS solution, whereas LAURA predicts a

less abrupt pressure change. Part of this difference is attributed to the prevention
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of upstream propagation of pressure waves in the subsonic portion of the boundary

layer by the PNS code. Also contributing is a somewhat coarse LAURA grid in the

streamwise direction at this point. The UPS solution was marched at a step size of

0.01 m, which is about one-tenth the streamwise length of the corresponding LAURA

cells at the cylinder-flare junction. Remember though that LAURA is second-order

accurate in the streamwise direction, while UPS is only a first-order algorithm in the

marching direction. It can be seen that with the present method UPS picks up the

pressure accurately from the LAURA solution at the interface region, located at two

nose radii.

A mirrored pressure contour plot is presented in Fig. 4.13. The left half of the

solution is from LAURA while the right side is the UPS solution. Both solutions are

taken from a cross section at 29 nose radii. It can be seen that the UPS bow shock

is crisper than the LAURA bow shock. This feature holds true in general, and is a

result of the different types and levels of numerical dissipation used in each scheme.

Reasonable agreement is seen between the two solutions, 27 nose radii downstream
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of the interface point.

Axial surface heat transfers are plotted in Figs. 4.14 and 4.15. Along with the

results from the two codes in the present method, heat transfer results from Ref. [2] for

a nonequilibrium PNS code, PNSNQ3D, and a nonequilibrium VSL solver, VSLNEQ,

are presented for comparison. In Fig. 4.14 very good agreement is seen with the

present method, as the distribution in windside heating spans 5-10 percent between

LAURA, UPS, and PNSNQ3D over the vehicle body. The VSLNEQ results are as

much as 35 percent lower than the other solutions on the cylinder. Looking at

the interface region, the UPS heating is seen to pick up very well from the LAURA

starting solution. At the juncture between the cylinder and the flare, the UPS solution

is seen to capture a more abrupt change in heating than the LAURA solution. As

was the case with the surface pressure, the cause of this difference is attributed to

the suppression of upstream information propagation by the space marching scheme

and axial smearing by the LAURA grid.

The corresponding leeside heat transfers are plotted in Fig. 4.15. Leeside heating

for this case, with a two degree angle of attack, is 40 percent lower than the windside

heating. The same trends between the four solutions are seen on the leeside as on the
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Fig. 4.15 Case 2 leeside heat-transfer rates.

windside, with even slightly better agreement. The LAURA and UPS solutions on

the leeside agree to within nine percent. Again, the VSLNEQ results are lower than

the other heating rates, which is similar to the results seen with Case 1 in Fig. 4.6

between the Gupta-VSL and UPS heat transfers.

4.2.2 Timing

It was seen earlier that for the non-catalytic wall conditions in Case 1 the present

method was limited in its computational advantage over the full TLNS solution by

a marching stability step-size restriction. This is not the case for the fully-catalytic

surface of Case 2. Since the species concentrations are forced to return to freestream

values at the wall, there is very little atomic oxygen and atomic nitrogen at the wall,

and hence the reaction controlling production of ionized nitric oxide, Eqn. 4.4, is not

the factor it was in Case 1. Much larger marching step sizes were able to be taken

for the sphere-cone-cylinder-flare configuration than for Case 1, and a substantial

reduction in solution time was achieved with the present method over a full TLNS

solution. Both the LAURA and UPS solutions for this case were obtained on a Cray
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YMP. Figure 4.16 tracks the convergence history of the LAURA solution for this

case. In this plot the residual starts out small and then jumps up abruptly. This is

part of the initialization and restart procedure, and does not represent a converged

solution. As with Fig. 4.9, the spikes in the convergence history during the first hour

are the result of grid adaptations. The later spikes are associated with the multi-

tasked restart procedure in LAURA. The total LAURA solution CPU time was 4.73

hours, requiring 25 megawords of memory.

With a marching step size of 0.01 m, two orders of magnitude larger than were

possible for Case 1, the UPS portion of the solution was obtained in only 776 CPU

seconds, and required only 2.15 megawords of memory. This represents an order of

magnitude reduction in both time and memory over the full-body LAURA solution.

Results presented in the next section show that, with a slight reduction in solution

resolution, the present method can achieve results with even five times less CPU time.
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/,.2.3 Grid Convergence

Body-normal distribution

The effect of grid resolution in the body-normal direction was investigated for both

the LAURA and UPS Case 2, two degree angle of attack solutions. The two grids

used the same number of cells in the streamwise and circumferential directions, but

had 64 and 128 cells in the body-normal direction, respectively. The wall cell size for

the 128 cell solutions was set to be half that of the 64 cell solutions, so as to maintain

the same grid stretching.

Figures 4.17 and 4.18 plot the windside and leeside centerline heat transfer rates

from the two LAURA solutions. Heat transfer rates, being a gradient of the numerical

solution, are particularly sensitive to variations in the solution, and are thus consid-

ered a good indication of how well a calculation has converged. In both of these plots

the LAURA solution can be seen to vary by 20-25 percent in the heating between the

two grids. Obviously, for these particular conditions LAURA is not grid converged

with 64 points in the body-normal direction. As seen before in Figs. 4.14 and 4.15,

the 128 point LAURA solution agrees well with the UPS and PNSNQ3D solutions,

so the baseline Case 2 results use the 128 point LAURA solution.

The corresponding UPS heat transfer rates for the two grids are presented in

Fig. 4.19, for the windside centerline, and Fig. 4.20, for the leeside centerline. It

is immediately apparent from these heating plots that the UPS solution was grid

converged with the 64 point grid. On both the windside and leeside there is a

difference in heating between the grids in the immediate vicinity of the interface,

but this is because the two solutions were started from the corresponding LAURA

solutions, which displayed a significant difference in heating on the two grids. It is

interesting to note that while the starting planes for the two UPS solutions were

different, within only five nose radii downstream the UPS solutions have converged,

indicating that that UPS is relatively robust with regards to the blunt-nose starting

solution and grid distribution. It had been expected that LAURA would have been

grid converged with fewer points than UPS, since it solves a higher-order set of

equations, TLNS vs. PNS, and employs a second-order accurate numerical scheme

in all three dimensions. Figures 4.17-4.20 show clearly that, in fact, the opposite is

true for this particular case.
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Fig. 4.17 Case 2 body-normal grid resolution: LAURA windside heating.
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Fig. 4.18 Case 2 body-normal grid resolution: LAURA leeside heating.
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Fig. 4.21 UPS Case 2 marching step size convergence check--heating.

Marching step size

The grid convergence of the UPS marching step size in the present method for Case 2

was investigated by repeating the solution with a step size of 0.05 m, five times larger

than was used for the baseline solution. Windside and leeside centerline comparisons

of heat transfer, Fig. 4.21, and surface pressure, Fig. 4.22, are presented for both

step sizes. Clearly, the baseline UPS portion of the present method's solution is

grid converged with respect to marching step size at 0.01 m. The cone-cylinder and

cylinder-flare junctions are slightly better resolved for both the heating and surface

pressure for the smaller, 0.01 m, step size solution, which would be expected. The

0.05 m step size UPS solution was obtained with 86 steps in 169 CPU seconds on a

Cray YMP.

4.2.4 Comparison with Perfect Gas

The Case 2 calculations were repeated using a perfect gas air model, rather than the

nonequilibrium model. Figure 4.23 contains the windside and leeside heat transfer

rates and Fig. 4.24 displays the corresponding surface pressures. Note that for this
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Fig. 4.22 UPS Case 2 marching step size convergence check--surface pressure.

calculation the LAURA solution was performed only on the sphere-cone portion of

the geometry, and not the entire vehicle. The UPS solution was started from the

sphere-cone junction point and extended the whole length of the body.

Comparing Figs. 4.14, 4.15, and 4.23, the effect of chemical nonequilibrium on the

surface heat transfer can be seen for this case. The perfect gas heating is seen to be

20-25 percent lower than the reacting flow heat-transfer results. This is a consequence

of the fully-catalytic wall boundary condition in the chemical nonequilibrium solution.

The dissociated and ionized reactants from the shock transport chemical potential

energy through the boundary layer, and then release the energy at the wall during

exothermic recombination, leading to the elevated heat transfer predictions from the

chemical nonequilibrium calculation, relative to the perfect gas solution.

Looking at Figs. 4.12 and 4.24, it is seen that chemical nonequilibrium does not

have much of an effect on the surface pressure for this case, as the perfect gas pres-

sures are only 2-3 percent higher than the corresponding nonequilibrium pressures.

For this particular case then it appears that a perfect gas calculation might suffice

for determining the aerodynamic characteristics, while a nonequilibrium solution is

required to accurately predict the thermal environment. This is not a general result,
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Fig. 4.25 Windside heat transfers at five degrees angle of attack.

with a noticeable exception being the space shuttle orbiter for which a nonequilibrium

solution was required at a similar Mach number in order to predict the aerodynamics

correctly[32].

4.2.5 Five Degrees Angle of Attack

A further nonequilibrium air solution for the PNSNQ3D code is presented in Ref. [2]

for the Case 2 configuration, but at five degrees angle of attack. Figures 4.25 and 4.26

present the corresponding windside and leeside heat transfers, respectively, for the

present method along with the results of Bhutta, who only reported a PNS solution

and not a VSL solution for this configuration.

Leeside agreement is excellent between all three solutions, with the present method

matching the full-body LAURA solution to within three percent. The windside agree-

ment is fair, though not as good as the leeside. On the windslde centerline the UPS

heating is seen to be 10 percent higher on the cone, seven percent higher on the cylin-

der, and 18 percent higher on the flare. Also, the UPS and LAURA heating trends

appear to be separating at the tail end of the body.
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Fig. 4.26 Leeside heat transfers at five degrees angle of attack.

The windside and leeside surface pressures from LAURA and UPS are shown in

Fig. 4.27. For the surface pressure excellent agreement is seen on the windside, while

good agreement is seen on the leeside, a slightly different trend than for the heating.

Also, the two solutions are in very good agreement on the surface pressure at the end

of the body, as contrasted with the windside heating trend in Fig. 4.25.

The LAURA convergence history is plotted in Fig. 4.28. Again, the early spikes

in Fig. 4.28 result from grid alignments while the later spikes are caused by the

multi-tasked restart procedure in LAURA. The LAURA solution was achieved with

some diflqculty for this case. Because of the strong expansion on the leeside at the

cone-cylinder junction the solution had to be relaxed very conservatively to maintain

stability. The full-body solution required 20 CPU hours on a Cray YMP. By contrast,

the UPS solution required only 800 CPU seconds on the same machine, nearly two

orders of magnitude less time.
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4.3 Shuttle: A Case for Future Work

A brief effort was made to apply the present method to a flight case of the Space

Shuttle. A LAURA solution was available corresponding to the point in flight STS-

28 studied by Kleb and Weilmuenster[17]. The nonequilibrium LAURA solution at

Mach 24.3 and 39.4 degrees angle of attack had been performed on a 128 x 100 x 60

grid. The altitude was 73.2 km and the wall temperature was fixed at 1100 K. A

plot of the orbiter geometry is presented in Fig. 4.29.

Forty degrees is a very large angle of attack for a PNS code to handle. Also, the

LAURA solution was performed with a finite-rate wall catalycity. This capability

is not available in the present version of UPS. The non-catalytic wall boundary

condition was chosen for UPS as being the closest of the two options to the LAURA

results. With the mismatched chemistry at the wall, the UPS solution was severely

limited by step-size stability constraints, similar to what was seen in Case 1. Due to

these stability problems, a UPS solution was only able to be achieved for a half meter

section of the geometry, in the region behind the canopy and ahead of the wings.

For Case 1 it was seen that the stability difficulties could be circumvented by taking
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marching step sizes in the sub-millimeter range. In the case of the orbiter, the sheer

size of the three-dimensional grid made these small step sizes prohibitively expensive.

Figure 4.30 plots the windside and leeside centerline surface pressures for the

LAURA and UPS solutions. At this location on the orbiter the streamwise pressures

are relatively constant. The UPS pressures are seen to be 5-10 percent lower than

the LAURA pressures on both the wind and lee sides. This could be due to the

differences in wall catalycity, as exothermic recombinations will release energy which

drives up the temperature and thus the pressure. However, a competing effect occur-

ring at the same time is that the recombination of atoms into molecules reduces the

moles of gas particles and thus the pressure. The reference quantities "L" and "Pr_f"

in Fig. 4.30 have been intentionally left unspecified.

While a full, stable solution was not able to be obtained for this case with the

present method, there are some indications of the potential benefits and future di-

rections to take. The LAURA solution requires 170 megawords of computer memory

and took 190 seconds to perform a single iteration on a Cray YMP, with thousands

of iterations being required to converge a solution. Clearly, this type of solution is a

one-time calculation even on the largest and fastest computers available today. The
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UPSsolution, by contrast, requiresonly 2.3 megawordsof memory,and runs at about

20 secondsper step.

For the presentcalculationa stepsizeof 0.0125m wasusedfor the UPS solution.
While this size of a step allows for a timely solution, it is seenthat the solution

is not stable, with a possiblecausebeing the differencesbetweenthe finite-rate wall

catalycity in the starting planeandthe non-catalytic boundary condition. This points
to a future area of work in adding a finite-rate catalycity option to UPS. Another
area of work could be to alter either the UPS or LAURA kinetic models to match

moreexactly,but this would involveextensivereprogramming,and other possibilities
or codesshouldbe consideredbeforemaking that step.



Chapter 5

CONCLUDING REMARKS

A new procedure has been implemented for the aerothermodynamic solution of hy-

personic, chemically-reacting air flowfields that combines two proven, existing solvers.

The robustness of the thin-layer Navier-Stokes solver LAURA has been joined with

the speed of the parabolized Navier-Stokes solver UPS. The class of vehicles to which

the method is applicable are blunt-nosed configurations with slender afterbodies. The

method offers the potential benefits of obtaining efficient solutions with second-order

accuracy in the crossflow planes, while requiring only a fraction of the computer time

and memory that a full-body LAURA solution would require.

Surface pressure and heat transfer results from the present method compare well

with the baseline LAURA solution for the first case considered, an axisymmetric six

degree sphere-cone at Mach 25. The downstream solution to 100 nose radii with

the present method compares well with the surface pressure of a viscous shock-layer

solution, but the viscous shock-layer heating is as much as 20 percent lower than the

present method. For the non-catalytic wall boundary condition it was found that

the differences in chemistry models between LAURA and UPS created a stability

restriction on the marching step size of the UPS solution, which tended to offset the

decrease in solution time expected with a marching scheme.

The second case considered, a blunted multi-conic at Mach 28, showed good agree-

ment between the present method and an all-body LAURA solution for surface pres-

sures and heat transfers. Results are obtained at both two and five degree angles of

attack. The effect of grid resolution was investigated in the body-normal direction

for both UPS and LAURA, and in the streamwisedirection for the UPS solution. A

comparison is also made between the chemical nonequilibrium results and a perfect

gas solution. This case employed a fully-catalytic wall boundary condition, and did

not encounter any stability restriction on marching step sizes. A significant reduc-

tion in both computer memory and solution time is demonstrated with the present

method over an all-body thin-layer Navier-Stokes solution.
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The present method is shown to be a fast, efficient procedure for obtaining
aerothermodynamicpredictions on blunted, slendervehicles at hypersonic speeds

with reacting air flowfields.



BIBLIOGRAPHY

[1] Dale A. Anderson,John C. Tannehill, and Richard H. Pletcher. Computational

Fluid Mechanics and Heat Transfer. Taylor and Francis, 1984.

[2] B. A. Bhutta, C. H. Lewis, and F. A. Kautz. A Fast Fully-Iterative Parabolized

Navier-Stokes Scheme for Chemically-Reacting Reentry Flows. AIAA Paper 85-

0926, June 1985.

[3] F. G. Blottner, M. Johnson, and M. Ellis. Chemically Reacting Viscous Flow

Program for Multi-component Gas Mixtures. SC-RR 70-754, December 1971.

[4] P. Buelow, J. Ievalts, and J. Tannehill. Comparison of Three-Dimensional

Nonequilibrium PNS Codes. AIAA Paper 90-1572, June 1990.

[5] P. Buelow, J. Tannehill, J. Ievalts, and S. Lawrence. A Three-Dimensional

Upwind Parabolized Navier-Stokes Code for Chemically Reacting Flows. AIAA

Paper 90-0394, January 1990.

[6] F. McNeil Cheatwood and R. A. Thompson. The Addition of Algebraic Turbu-

lence Modeling to Program LAURA. NASA TM 107758, April 1993.

[7] T. A. Edwards. CFD Analysis of Hypersonic, Chemically Reacting Flow Fields.

In Theoretical and Experimental Methods in Hypersonic Flows, pages 1.1-1.12.

AGARD, April 1993.

[8] P. A. Gnoffo. An Upwind-Biased, Point-Implicit Relaxation Algorithm for Vis-

cous, Compressible Perfect-Gas Flows. NASA TP 2953, February 1990.

[9] P. A. Gnoffo. Code Calibration Program in Support of the Aeroassist Flight Ex-

periment. Journal of Spacecraft and Rockets, 27(2):131-142, March-April 1990.



5O

[10]

[11]

[12]

Peter A. Gnoffo. Point-Implicit Relaxation Strategies for Viscous, Hypersonic

Flows. In T. K. S. Murthy, editor, Computational Methods in Hypersonic Aero-

dynamics, pages 115-151. Kluwer Academic Publishers, 1991.

Peter A. Gnoffo, Roop N. Gupta, and Judy L. Shinn. Conservation Equa-

tions and Physical Models for Hypersonic Air Flows in Thermal and Chemical

Nonequilibrium. NASA TP 2867, February 1989.

Francis A. Greene. An Upwind-Biased Space Marching Algorithm for Supersonic

Viscous Flow. NASA TP 3068, March 1991.

[13] R. N. Gupta, K. P. Lee, and E. V. Zoby. A Viscous Shock-Layer Analysis of 2-D

and Axisymmetric Flows. AIAA Paper 93-2751, July 1993.

[14] Roop N. Gupta, Jerrold M. Yos, Richard A. Thompson, and Kam-Pui Lee. A

Review of Reaction Rates and Thermodynamic and Transport Properties for an

11-Species Air Model for Chemical and Thermal Nonequilibrium Calculations to

30 000 K. NASA RP 1232, August 1990.

[15] Ami Harten. High Resolution Schemes for Hyperbolic Conservation Laws. Jour-

nal of Computational Physics, 49:357-393, 1983.

[16] Sang-Wook Kang, Michael G. Dunn, and W. Linwood Jones. Theoretical and

Measured Electron-Density Distributions for the RAM Vehicle at High Altitudes.

AIAA Paper 72-689, June 1972.

[17] W. L. Kleb and K. James Weilmuenster. Characteristics of the Shuttle Orbiter

Leeside Flow During a Reentry Condition. AIAA Paper 92-2951, July 1992.

[18] S. L. Lawrence, D. S. Chaussee, and J. C. Tannehill. Application of an Up-

wind Algorithm to the Three-Dimensional Parabolized Navier-Stokes Equations.

AIAA Paper 87-1112, June 1987.

[19] Scott L. Lawrence and A. Balakrishnan. UPS Code Development. Fifth National

Aerospace Plane Technology Symposium Paper 13, October 1988.



51

[20] Scott L. Lawrence,Upender Kaul, and John C. Tannehill. UPS CodeEnhance-
ments. Sixth National AerospacePlane TechnologySymposiumPaper 16, April
1989.

[21] Scott L. Lawrence,John C. Tannehill, andDennyS.Chausee.Upwind Algorithm

for the ParabolizedNavier-StokesEquations. AIAA Journal, 27(9):1175-1183,

September 1989.

[22] K. K. Muramoto. The Prediction of Viscous Nonequilibrium Hypersonic Flows

about Ablating Configurations using an Upwind Parabolized Navier-Stokes

Code. AIAA Paper 93-2998, July 1993.

[23] Chul Park. NonequiIibrium Hypersonic Aerothermodynamics. John Wiley &

Sons, Inc., 1990.

[24] P. L. Roe. Approximate Riemann Solvers, Parameter Vectors, and Difference

Schemes. Journal of Computational Physics, 43:357-372, October 1981.

[25] P. C. Stainback, C. B. Johnson, L. B. Boney, and K. C. Wicker. Comparison

of Theoretical Predictions and Heat-Transfer Measurements for a Flight Exper-

iment at Mach 20 (Reentry F). NASA TM X 2560, 1972.

[26] J. Tannehill, P. Buelow, J. Ievalts, and S. Lawrence. A Three-Dimensional

Upwind Parabolized Navier-Stokes Code for Real Gas Flows. AIAA Paper 89-

1651, June 1989.

[27] J. C. Tannehill, J. O. Ievalts, and S. L. Lawrence. An Upwind Parabolized

Navier-Stokes Code for Real Gas Flows. AIAA Paper 88-0713, January 1988.

[28] J. C. Tannehill and G. Wadawadigi. Devolopment of a 3-D Upwind PNS Code

for Chemically Reacting Hypersonic Flowfields. NASA CR 190182, 1992.

[29] John C. Tannehill, John O. Ievalts, Philip E. Buelow, Dinesh K. Prabhu, and

Scott L. Lawrence. Upwind Parabolized Navier-Stokes Code for Chemically

Reacting Flows. Journal of Thermophysics, 4(2):149-156, April 1990.



52

[30] Y. C. Vigneron, J. V. Rakich, and J. C. Tannehill. Calculation of Supersonic
Viscous Flow over Delta Wings with Sharp SubsonicLeading Edges. AIAA

Paper 78-1137,1978.

[31] K. JamesWeilmuensterandPeterA. Gnoffo.SolutionStrategiesand Heat Trans-

fer Calculations for Three-Dimensional Configurations at Hypersonic Speeds.

AIAA Paper 92-2921, July 1992.

[32] K. James Weilnmenster, Peter A. Gnoffo, and Francis A. Greene. Navier-Stokes

Simulations of the Shuttle Orbiter Aerodynamic Characteristics with Emphasis

on Pitch Trim and Body Flap. AIAA Paper 93-2814, July 1993.

[33] William A. Wood and Richard A. Thompson. Combined LAURA-UPS Hyper-

sonic Solution Procedure. NASA TM 107682, March 1993.

[34] H. C. Yee. On Symmetric and Upwind TVD Schemes. NASA TM 88325, 1986.



Appendix A

UPS STARTING PLANE EXTRACTION PROGRAM

C

C

C

C

c

c

c

c

C

c

C

c

C

C

c

C

program lauraOl_to_fort2

uses UPS enthalpy curves

w.a.wood 9 - 16 - 93

modified 12 - 6 - 93

extracts UPS starting plane fort.2 from LAURA restart

file RESTART.in

both files are fortran binary

aux. file 'lOltof2.dat' contains:

description line

conversion factor to meters

cell number for starting plane

mach number

freestream velocity

grid averaged to the cell center plane

xl ( i, j, k, XYZ) laura grid coordinates

xu (k, I, XYZ) UPS grid coordinates

vl ( i, j, k, variables) laura cell centered variables

l-u, 2-v, 3-w, 4-T, 5-Tv,

densities: 6-n, 7-o, 8-n2, 9-02, lO-no, ll-no+, 12-e-

vu ( k, I, variables) UPS cell centered variables

l-rho, 2-rho*u, 3-rho*v, 4-rho*w, 5-Etotal,

concentrations: 6-02, 7-0, 8-n, 9-no, 10-no+, ll-n2

parameter ( iplanes = 121, jplanes = i01, kplanes = 61)
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c

c

common/ dO1 / hctb (50, 6), ttb (50), amws (6), hsO (6)

common / dO2 / spf ( 50, 6 )

common / dO4 / hcint ( 6 ), tint

dimension xl( iplanes, jplanes, kplanes, 3 ),

_ xu( jplanes, kplanes, 3 ),

_ vl( iplanes, jplanes, kplanes, 12 ),

_ vu( jplanes, kplanes, ii ),

_ avmw( jplanes, kplanes )

open ( i0, file = 'RESTART.in', form = 'unformatted',

_ status = 'old')

open ( 11, file = 'lOltof2.dat ', form = 'formatted',

_ status = 'old')

read ( 11, * )

confac = .3048 ! convert from feet to meters

read ( Ii, * ) confac

laura dimensions (cell centered) and number of species

read ( I0 ) ilm, jlm, klm, llms

llm = llms + 5 ! # of laura variables

kum = jlm + 1

lum = klm + 1

! ups grid dimensions

write ( 2 ) kum, lum

laura variables

read ( i0 ) (((( vl(il, jl, kl, Ii), il=l, ilm), jl=l, jlm),

_ kl=l, klm), II=I, llm),

laura grid

_ (((( xl(il, jl, kl, Ii), il=l, ilm+l), 31=I, jlm+l),

_ kl=l, klm+l), II=I, 3)

location of ups starting plane

read ( II, * ) idata

igrid = idata + I

grid averaging

do 201 II = i, 3



55

c

c

C

c

do 201 ]i = 1, jim + 1

do 201 kl = I, klm + 1

201 xl( igrid, ]I, kl, II ) = .5 * ( xl( igrid, jl, kl, ii ) +

xl( idata, jl, kl, II ) )

obtain ups grid from laura grid

do 20 ku = i, kum

jl = kum - ku + i

do 20 lu = I, lum

kl = lu

xu( ku, lu, i) = -xl( igrid, jl, kl, 3) * confac

xu( ku, lu, 2) = xl( igrid, jl, kl, I) * confac

20 xu( ku, lu, 3) = xl( igrid, jl, kl, 2) * confac

ups grid
write (2) ((( xu( ku, lu, mu), ku=l, kum), lu=l, lum), mu=l, 3)

total density from species densities

do 21 jl = i, jim

ku = jlm + i - jl

do 21 kl = i, klm

lu = kl

vu( ku, lu, 1 ) = O.

do 21 Ii = 6, llm

21 vu( ku, lu, 1 ) = vu( ku, lu, I ) + vl( idata, ]i, kl, ii )

momentums

read ( Ii, * ) amach, velinf

vel2 = velinf * velinf

snd2 = vel2 / amach**2

do 22 jl = I, jim

ku = jlm + i - jl

do 22 kl = I, klm

lu = kl

vu(ku,lu,2) = -amach * vl(idata,jl,kl,3) * vu(ku,lu,l)

vu(ku,lu,3) = amach * vl(idata,jl,kl,l) * vu(ku,lu,l)

22 vu(ku,lu,4) = amach * vl(idata,]l,kl,2) * vu(ku,lu,l)

species mass fractions

do 23 jl = I, jim

ku = jim + I - jl

do 23 kl = i, klm
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lu = kl

vu( ku, lu, 6 ) = vl( idata, jl, kl, 9 ) / vu( ku, lu, 1 )

vu( ku, lu, 7 ) = vl( idata, jl, kl, 7 ) / vu( ku, lu, 1 )

vu( ku, lu, 8 ) = vl( idata, jl, kl, 6 ) / vu( ku, lu, 1 )

vu( ku, lu, 9 ) = vl( idata, ]I, kl, I0) / vu( ku, lu, 1 )

vu( ku, lu, I0) = vl( idata, ]i, kl, II) / vu( ku, lu, I )

23 vu( ku, lu, 11) = vl( idata, ]I, kl, 8 ) / vu( ku, lu, i )

C

energy

using UPS enthalpy table data

rbar = 8314.34 ! universal gas constant

call csplin ( 50, 6 ) ! determines enthalpy spline coeff.

do 30 jl = 1, jlm ! main energy loop

ku = jlm + 1 - jl

do 30 kl = I, klm

lu = kl

tint = vl( idata, jl, kl, 4 ) ! cell temperature

compute dimensional species enthalpies

call speval ( 50, 6 )

hsl

hs2

hs3

hs4

hs5

hs6

= hcint( I ) • tint + hsO( 1 )

= hcint( 2 ) • tint + hsO( 2 )

= hcint( 3 ) • tint + hsO( 3 )

= hcint( 4 ) • tint + hsO( 4 )

= hcint( 5 ) • tint + hsO( 5 )

= hcint( 6 ) • tint + hsO( 6 )

mixture enthalpy

hhi = hsl • vu(ku,lu,6) +hs2 • vu(ku,lu,7) +hs3 • vu(ku,lu,8) +

hs4 • vu(ku,lu,9) +hs5 • vu(ku,lu,lO) +hs6 • vu(ku,lu,ll)

kinetic energy

u2 = .5 • vel2 • ( vl(idata,jl,kl,1)_2 + vl(idata,jl,kl,2)*_2

+ vl(idata,jl,kl,3)_*2 )

htot = u2 + hhi , total enthalpy

pot = O. i pressure over density
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c

do 34 is = 1, 6

34 por = por + vu(ku, lu, is+5) * rbar / amws(is) * tint

etot = htot - por ' total energy

avmw( ku, lu ) = rbar * tint / por ! average molecular weight

30 vu( ku, lu, 5 ) = etot * vu(ku, lu, 1) / snd2

ups variables

write (2) ((( vu( ku, lu, mu), ku=l, jlm), lu=l, klm), mu=l, 5)

write (2) ((( vu( ku, lu, mu), ku=l, jlm), lu=l, klm), mu=6, 10)

write (2) (( avmw( ku, lu ), ku = i, jlm ), lu = I, klm )

stop

end

subroutine csplin ( n, ne ) ' csplin from UPS

common / dO1 / hctb (50, 6), ttb (50), amws (6), hsO (6)

common /dO2 / spf(50, 6)

common /dO3 / asp(50, 6),bsp(50, 6),csp(50, 6),fsp(50, 6)

C==========> <=========

c_ .... =====> evaluation of spline coefficients <==== .....

c==========> <===== ....

10

do 10 m = 1,he

do 10 i = 2,n-1

asp(i,m) = ttb(i)-ttb(i-l)

bsp(i,m) = 2.dO*(ttb(i+l)-ttb(i-1))

csp(i,m) = ttb(i+l)-ttb(i)

fsp(i,m) = 6.dO.((hctb(i+l,m)-hctb(i,m))/csp(i,m)-(hctb(i,m)-

+ hctb(i-l,m))/asp(i,m))

do 20 m = l,ne

asp(1,m) = O.dO

bsp(1,m) = 1.dO

csp(1,m) = -.5dO

fsp(1,m) = O.dO

asp(n,m) = - .5dO
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20

bsp(n,m) = l.dO

csp(n,m) = O.dO

fsp(n,m) = O.dO

call strid(l,n,ne)

30

do 30 m = l,ne

do 30 k = l,n

spf(k,m) = fsp(k,m)

return

end

subroutine strid(nl,nu,ne) ! strid from UPS

common /dO3 / asp(50, 6),bsp(50, 6),csp(50, 6),fsp(50, 6)

c= ......... > non-periodic scalar tridiagonal solver <=========

C==========> <=========

10

20

30

nip = nl+nu

do I0 m = l,ne

csp(nl,m) = csp(nl,m)/bsp(nl,m)

fsp(nl,m) = fsp(nl,m)/bsp(nl,m)

do 20 j = nl+l,nu

do 20 m = 1,ne

z = 1. dO/(bsp (j ,m) -asp (j ,m) +csp (j-I ,m) )

csp(j ,m) = csp(j ,m)*z

fsp(3 ,m) = (fsp (3 ,m)-asp(j ,m) _fsp (j- i ,m)) _z

do 30 k = nl+1,nu

do 30 m = 1,ne

fsp(nlp-k,m) = fsp(nlp-k,m)-csp(nlp-k,m)*fsp(nlp-k+l,m)

return

end

subroutine speval(n,ne) ! speval from UPS

common / dOl / hctb (50, 6), ttb (50), amws (6), hsO (6)

common /dO2 / spf(50, 6)
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common /dO4 / hcint(6) ,tint

C=====m====>

c========== > interpolation <=========

C==========>

10

20

do I0 i = l,n-i

if(tint .le. ttb(i+l)) go to 20

continue

continue

dxp = ttb(i+l)-tint

dxm = tint-ttb(i)

del = ttb(i+l)-ttb(i)

do 30 m = l,ne

hcint(m) = spf(i,m),dxp,(dxp*dxp/del-del)/6.dO+

+ spf(i+l,m),dxm,(dxm*dxm/del-del)/6.dO+

+ hctb(i,m),dxp/del+hctb(i+l,m)*dxm/del

30 continue

return

end

C::CBDBDBDBDBDBDBDBDBDBDBDBDBDBDBDBDBDBDBDBDBDBDBDBDBDBDBDBDBDBDBDBD

block data chemdat , from UPS

C::CBDBDBDBDBDBDBDBDBDBDBDBDBDBDBDBDBDBDBDBDBDBDBDBDBDBDBDBDBDBDBDBD

common / dOl / hctb (50, 6), ttb (50), amws (6), hsO (6)

C**********

c********** gas model data (air) ********
********

C**********

********************************************************************

c ..... species order o2,o,n,no,no+,n2

c ..... species molecular mass (kg/kmol)

data (amws(n),n=l, 6)
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i / 32.d0, 16.dO, 14.008d0, 30.008d0, 30.008d0, 28.016d0 /

c ..... species formation enthalpy (j/kg)

data (hsO(n),n=l,6)

1 / O.dO , 1.543119d+07, 3.362161d+07,
2 2.996123d+06, 3.283480d+07, O.dO /

c ..... temperature table

data (ttb (n) ,n=1,50)

i / 50.dO, 400.dO, 600.dO, 800.dO, lO00.dO,

2 1400.dO, 1600.dO, 1800.dO, 2000.dO, 2200.d0,

3 2600.d0, 2800.d0, 3000.dO, 3200.d0, 3400.d0,

4 3800.d0, 4000.dO, 4200.d0, 4400.d0, 4600.d0,

5 5000.dO, 5200.d0, 5400.d0, 5600.d0, 5800.d0,

6 6200.d0, 6400.d0, 6600.d0, 6800.d0, 7000.dO,

7 7400.d0, 8000.dO, 9000.dO, lO000.dO, llO00.dO,

8 13000.dO, 14000.dO, 15000.dO, 16000.dO, 17000.dO,

9 19000.dO, 20000.dO /

1200.d0,

2400.d0,

3600.d0,

4800.d0,

6000.dO,

7200.d0,

12000.dO,

18000.dO,

c ..... species enthalpy tables (calorically imperfect)

data (hctb(n, 1),n=1,50)

1 / 908.813d0, 914.579d0,

+ 957.352d0, 980.354d0,

2 1018.239d0, 1033.615d0,
+ 1059.715d0, 1071.173d0,

3 1091.997d0, 1101.590d0,

+ 1119.433d0, 1127.740d0,

4 1143.21d0 , 1150.397d0,

+ 1163.742d0, 1169.928d0,
5 1181.414d0, 1186.751d0,

+ 1196.714d0, 1201.379d0,

933.384d0,

1000.647d0,

1047.298d0,

1081.888d0,

1110.724d0,

1135.662d0,

1157.237d0,
1175.812d0,

1191.844d0,

1205.863d0,
6 1210.186d0,

+ 1222.361d0,

7 1233.708d0,

+ 1309.428d0,

8 1348.051d0,

+ 1364.696d0,

9 1364.370d0,

1214.363d0, 1218.416d0,

1226.21440, 1229.992d0,

1269.796d0, 1291.02d0,

1325.003d0, 1337.846d0,

1355.812d0, 1361.299d0,

1366.212d0, 1366.029d0,

1361.391d0 /

data (hctb(n, 2),n=1,50)
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i

+

2

+

3

+

4

+

5

+

6

+

7

+

8

+

9

/1313.994d0, 1394.834d0, 1372.763d0,

1358.171d0, 1348.181d0, 1340.985d0,

1335.576d0, 1331.374d0, 1328.021d0,

1325.303d0, 1323.08d0, 1321.263d0,

1319.805d0, 1318.674d0, 1317.848d0,

1317.315d0, 1317.061d0, 1317.08d0,

1317.351d0, 1317.869d0, 1318.608d0,

1319.554d0, 1320.691d0, 1321.995d0,

1323.448d0, 1325.031d0, 1326.73d0,

1328.52d0 , 1330.391d0, 1332.322d0,

1334.303d0, 1336.32d0, 1338.361d0,

1340.415d0, 1342.472d0,

1346.566d0, 1352.558d0,

1370.213d0, 1377.676d0,

1391.841d0, 1400.015d0,

1423.369d0, 1440.629d0,

1490.871d0, 1525.064d0

1344.526d0,

1361.882d0,

1384.674d0,

1410.175d0,

1462.882d0,

/

data (hctb(n,

i /1482.86d0 ,

+

2

+

3

+

3) ,n=1,50)

1482.86d0,

1482.86d0 , 1482.86d0,

1482.86d0 , 1482.86d0,

1482.881d0, 1482.926d0,

1483.24d0 , 1483.616d0,

1485.144d0, 1486.445d0,

1482.86d0,

1482.86d0,

1482.866d0,

1483.031d0,

1484.224d0,

1488.197d0,

4 1490.465d0, 1493.298d0, 1496.73d0 ,

+ 1500.793d0, 1505.494d0, 1510.833d0,

5 1516.803d0, 1523.381d0, 1530.536d0,

+ 1538.23d0 , t546.423dO, 1555.067d0,

6 1564.114d0, 1573.51d0 , 1583.204d0,

+ 1593.143d0, 1603.276d0, 1613.55d0 ,

7 1623.922d0, 1655.172d0, 1705.539d0,

+ 1751.14d0 , 1790.688d0, 1824.46d0 ,

8 1853.821d0, 1880.8d0 , 1907.725d0,

+ 1936.922d0, 1970.476d0, 2010.027d0,

9 2056.631d0, 2110.681d0 /

data (hctb(n,

I / 969.129d0,

+ 1003.282d0,

2 1062.907d0,

+ ii05.081d0,

3 I134.025d0,

4) ,n=1,50)

971.608d0, 983.714d0,

1024.606d0, 1044.792d0,

1078.852d0, 1092.836d0,

1115.888d0, 1125.473d0,

1141.703d0, 1148.639d0,
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+ 1154.938d0, 1160.692d0, 1165.97d0 ,
4 1170.839d0, 1175.348d0, 1179.54d0 ,

+ 1183.455d0, 1187.122d0, 1190.572d0,

5 1193.827d0, 1196.91d0 , 1199.839d0,

+ 1202.632d0, 1205.306d0, 1207.874d0,

6 1210.35d0 , 1212.746d0, 1215.075d0,

+ 1217.349d0, 1219.576d0, 1221.77d0 ,

7 1223.936d0, 1249.367d0, 1265.608d0,

+ 1282.193d0, 1298.903d0, 1315.488d0,
8 1331.695d0, 1347.299d0, 1362.09d0 ,

+ 1375.907d0, 1388.578d0, 1399.988d0,

9 1410.02d0 , 1418.644d0 /

data (hctb(n,

I / 969.125d0,

+ 987.227d0,

2 1036.876d0,

+ I078.701d0,

3 1109.319d0,

+ 1132 049d0,

4 1149 52d0 ,

+ 1163 45d0 ,

5 1175 019d0,

+ 1185 143d0,

6 1194 62d0 ,

+ 1204 176d0,

7 1214 469d0,

+ 1278.948d0,

8 1415.495d0,

+ 1569.608d0,

9 1696.412d0,

5) ,n=l,50)

969 831d0,

1003 254d0,

1052 21d0 ,

1089 991d0,

1117 619d0,

1138 357d0,

1154.491d0,

1167.52d0 ,
1178.512d0,

1188.336d0,

1197.761d0,

1207.495d0,

1226.059d0,

1311.095d0,
1467.173d0,

1616.646d0,

1728.138d0

975.141d0,

1020.333d0,

1066.143d0,
1100.151d0,

1125.164d0,
1144.16d0 ,

1159.12d0 ,

1171.364d0,

1181.876d0,

1191.486d0,

1200.94d0 ,

1210.918d0,

1249.44d0 ,
1366.826d0,

1519.227d0,

1659.142d0,
/

data (hctb(n,

1 /1038.032d0,

+ 1057.787d0,

2 1111.179d0,

+ 1155.833d0,

3 1188.391d0,

+ 1212.482d0,

4 1230.94d0 ,

+ 1245.564d0,

5 1257.501d0,

+ 1267.524d0,

6) ,n=1,5o)
I038.817d0,

1075.089d0,

I127.577d0,

1167 852d0,

1197 198d0,

1219 155d0,

1236 174d0,

1249 797d0,

1261 023d0,

1270.54d0 ,

i044.651d0,

1093.45d0 ,

I142.45d0 ,

1178.653d0,

1205.194d0,

1225.285d0,

1241.034d0,

1253.767d0,

1264.357d0,

1273.426d0,
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6 1276.197d0, 1278.87d0 , 1281.463d0,

+ 1283.988d0, 1286.463d0, 1288.903d0,

7 1291.323d0, 1298.611d0, 1311.745d0,

+ 1329.699d0, 1357.905d0, 1391.942d0,

8 1426.424d0, 1465.677d0, 1508.544d0,

+ 1553.524d0, 1598.981d0, 1643.349d0,

9 1685.285d0, 1723.743d0 /

end



Appendix B

UPS EXTERNAL GRID EXTRACTION PROGRAM

C

C

c

c

C

program laura_ups_grid

w.a.wood 9 - I0 - 93

modified 12 - 3 - 93

copies volume grid from LAURA RESTART.in file and

writes as fort.ll external grid for UPS

both files are fortran binary

conversion factor read from standard input

starting point read from standard input

xl ( i, j, k, XYZ) laura grid coordinates

xu ( k, I, m, XYZ) UPS grid coordinates

vl ( i, j, k, variables) laura cell centered variables

l-u, 2-v, 3-w, 4-T, 5-Tv,

densities: 6-n, 7-0, 8-n2, 9-02, lO-no, ll-no+, 12-e-

parameter ( iplanes = 121, jplanes = 101, kplanes = 61 )

dimension xl ( iplanes, jplanes, kplanes, 3 ),

_ xu ( jplanes, kplanes, iplanes, 3 ),

_ vl ( iplanes, 3planes, kplanes, 12 )

open ( I0, file = 'RESTART.in', form = 'unformatted',

status = 'old')

confac = .8048 ! convert from feet to meters

confac = 1.

write(6,*) ' enter conversion factor to meters, default=',confac
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read(5,*) confac

laura dimensions (cell centered) and number of species

read ( i0 ) ilm, jlm, klm, llms

llm = llms + 5 ! # of laura variables

kum = jlm + i

lum = klm + i

mum = ilm + i

! ups grid dimensions

write ( 11 ) kum, lum

laura variables

read ( 10 ) (((( vl (il, jl, kl, ii), ii=i, ilm), 31=1, jlm),

_ kl=l, klm), 11=1, llm),

laura grid

((((xl(il,]l,kl,ll), ii=1, ilm+l), jl=l, jlm+l),

kl=l, klm+l), II=I, 3)

istart = 14 ! first plane in external grid

write(6,*) ' enter starting plane, default =, , istart

read(5,*) istart

obtain ups grid from laura grid

do 20 mu = 1, mum

il = mu

do 20 ku = I, kum

jl = kum - ku + 1

do 20 lu = i, lum

kl = lu

xu ( ku, lu, mu, 1 ) = -xl ( il, jl, kl, 3 ) * confac

xu ( ku, lu, mu, 2 ) = xl ( il, jl, kl, 1 ) * confac

20 xu ( ku, lu, mu, 3 ) = xl ( il, jl, kl, 2 ) * confac

ups grid

do 21 mu = istart, mum

21 write ( II ) ((( xu ( ku, lu, mu, n ), ku = i, kum ),

lu z i, lum ), n = 1, 3 )

stop

end



Appendix C

EXTERNAL GRID ADAPTOR ROUTINE FOR UPS

SOLUTIONS

C

c

c

c

c

c

iO

program grdc2

w.a.wood 3 - i0 - 94

reads in ups external grid, modifies a plane by stretching,

as well as all following planes,

and writes out a new external ups grid

keeps the inner 40% of points fixed

linearly varies stretching on outer 60Z of grid to reach

the specified increase in size

parameter ( im = 52 ) i number of planes

dimension x(im, i6, I02), y(im, i6, i02), z(im, i6, 102)

read (II) jm, km

write(21) 3m, km

do iO i=i, im

read(li) (( x(i, j, k), j = i, jm), k = i, kin),

_ (( y(i, 3, k), j = i, jm), k = i, km),

_ (( z(i, j, k), j = I, jm), k = I, kin)

continue

write(*,*) ' enter starting plane number to be modified'

read(*,*) ichgl

write(*,*) ' enter ending plane number to be modified'

read(*,*) ichg2

write (*,*) ' Enter percentage length increase (0 = same) '
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c

C

c

do 20 ichg = ichgl, ichg2

write(*,*) ' enter proportional length increase for plane ',

_ ichg, ' (O=same) '

read(*,*) sl

sl = sl * .01

kpl = km* 2 / 5

kp2 =km - kp1

' inner points

' outer points

20

11

12

13

do 12 k = kpl, km

fac = 1. + sl * float( k - kpl ) / float( kp2 )

do Ii j = i, jm

do 20 ichg = ichgl, im

y(ichg, j, k) = y(ichg, j, k) * fac

z(ichg, J, k) = z(ichg, j, k) * fac

continue

continue

continue

do 13 i=l, im

write(21) ((x(i,j ,k), j=l,jm), k=l,km),

_ ((y(i,j,k), j=l,jm), k=l,km),

_ ((z(i,j,k), j=l,jm), k=l,km)

continue

stop

end
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